Rhombische Polyeder

Zum Rhombenenneakontaeder


Das Rhombendodekaeder und das Rhombentriakontaeder:

und seine beide expandierte Formen:


o2c-1o2c-2,  STEL-1STEL-2

und die wieder verdreht


o2c-1o2c-2,   STEL-1STEL-2

Hinweis: beim Verdrehen werden die Rhomben ein wenig schmaller. Die neue spitzen Winkel sind entsprechend: 69,4775° und 62,9667°.
Die Drehwinkel beim sR3 wurden vom Grzegorz Jagodzinski sehr genau berechnet.
Siehe auch hier.

Das Rhombendodekaeder kann man auch tetraedrisch expandieren. Das neue Polyeder ist ein 28-Flächner.

  o2c,   STEL

Dieses Polyeder kann man zusätzlich verdrehen und wir erhalten ein Polyeder mit 40 Seitenflächen (12 Rhomben und 28 gleichseitigen Dreiecken).

  o2c,   STEL

Hinweis: auch hier beim Verdrehen werden die Rhomben ein wenig schmaller. Beim 28-Flächner beträgt der Spitzwinkel wie beim Rhombendodekaeder 70,5288°, nach Verdrehung - 69,1211°.
Die rote Dreiecke wurden um -13.7238° und die Rhomben um 23,0012° verdreht.
Die Parameter des 40-Flächners hat David I. McCooey berechnet.

Drehen wir die Rhomben weiter, erhalten wir einen weiteren 28-Flächner:

  o2c Stel

Interessant: die Koordinaten der Ecken sind ganzzahlig. Dieses Polyeder wurde von Enrico Bernal, David McCooey und von mir gefunden.


  o2c

  o2c

Die Hülle von diesem Toroid ist ein 50-Flächner:

  o2c

Dieses Polyeder kann eine infinite Struktur bilden:

o2c


Aus Rhombentriakontaeder kann man infinite reguläre Strukturen bilden. Unten ein Cluster aus acht Polyedern. 



Vom Rhombentriakontaeder existieren zwei Formen: eine konvexe und eine konkave. Die konkave Form entsteht, wenn wir aus der konvexen Form acht oblate, goldene Rhomboedern abziehen.
Beide Formen zusammen füllen den Raum regulär und lückenlos aus.


Und hier der Rhombendodekaederstumpf und der Rhombentriakontaederstumpf:


Die Komposition von 15 rhombischen Polyedern (Dodekaedern):

  o2c


Stand: 17.03. 2017

© Tadeusz E. Dorozinski

E-mail:   info@3doro.de

Startseite